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A restriction of the zonal spherical function of type A on a singular line
is expressed by the generalized hypergeometric function (HG)
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Then the Gauss summation formula, or Harish-Chandra’s c-function, of
Heckman-Opdam’s HG, which is a generalization of the zonal spherical func-
tion, is obtained by a connection formula of this generalized HG by [1].

We introduce the generalized HG of two variables
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under the condition that the differential equation M satisfied by ϕ(x, y) has
no irregular singularities, namely we assme

p′ − p+ 1 = q′ − q + 1 = r − r′.

We note that Appell’s hypergeometric functions are examples.

The following problems will be discussed.

• Integral repsentaion of ϕ(x, y)

• Rank and singularities of M

• Construction of a base of local solutions at several singular points

• Connection fromula between these local solutions

• Necessay and sufficient condition for the irreducibility of M

• Genelization of ϕ(x, y) to HG with more variables.

This work is in progress collabolated with S-J. Matsubara-Heo.
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